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A model of the antenna control system for the azimuth and elevation axes of the
DSS 13 antenna is developed. This model is used for simulation of elevation and
azimuth dynamics, cross-coupled dynamics, and radio-frequency pointing error due
to both input commands and wind disturbances. This model also serves as a tool for
the antenna controller design. A modal state-space model of the antenna structure
was obtained from its finite-element model with a free-rotating tipping structure and
alidade. Model reduction techniques applied separately for the antenna structure,
elevation and azimuth drives, and rate-loop model reduce the system order to one-
third of that of the original, while preserving its significant dynamic properties.
Extensive simulation results illustrate properties of the model.

l. Introduction

The control system model for the elevation drive of the
DSS 13 antenna was described in [1]. This article ex-
tends the previous approach to the full control system of
the antenna (in azimuth and elevation), and extends the
structural model for modes up to 10 Hz. This article also
describes the wind disturbance model used to study this
important source of antenna pointing error. The antenna
structural model for the 90-deg elevation angle is obtained
from the antenna’s finite-element model with a free rota-
tion in azimuth and elevation. A linear structural model
is analyzed. Nonlinear effects due to dry friction are not
considered. A state-space model is used to describe the
control system and its components.

The structure and the drives, as well as the rate-loop
model, have some purely imaginary poles or poles at zero

(the latter poles have integrating properties). Known re-
duction techniques fail when applied to systems with inte-
grators. A balanced reduction technique, developed here
for the systems with integrators, was applied to reduce the
order of the structural model, elevation and azimuth drive
models, and subsequently the rate-loop model. The order
of the resulting reduced model is one-third of the origi-
nal’s, while the modeling error is small in comparison to
the system dynamics.

The presented approach is an analytical base for com-
puter software development. This software is designed as a
tool for simulations of antenna dynamics due to the input
commands and disturbances, for control system analysis,
and for the position control algorithm design. Extensive
simulations have been performed and described to illus-
trate the overall system properties.
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1. Structural Model

The antenna structural model for elevation control pur-
poses was described in [1]. In this article, structural mod-
eling is expanded for the antenna in both elevation and
azimuth motions. New developments specific to the joint
azimuth and elevation modeling are presented; the reader
is referred to [1] for the approaches used in the elevation
control system model. The state-space representation de-
noted by a quadruple (A, B,C, D) is a set of first-order
differential equations

z = Az + Bu, y=Cx+ Du (1)
where the state vector z is of dimension n x 1, the in-
put u is of dimension p x 1, the output y is of dimension
g X 1, and the matrices 4, B, C, and D are of dimensions
nXnnxp,qxn,and ¢ X p, respectively.

A. Full Model

In this section the state-space quadruple in modal co-
ordinates (A, By, Cs, D,) for the antenna structure is de-
termined. The state vector of the structure z, consists of
modal displacements ¢, and modal velocities v,

zy = [o] v]] (2)

From the finite-element model, generated by the JPL-
IDEAS codel!, m = 21 modes are obtained. The first and
the second modes are rigid-body modes with zero natural
frequency. The modes are determined for r selected points
of interest; thus, ¢; = [¢;1, o, -- y¢1r] i =1,-.-,21.
The antenna structural model is generated from the nat-
ural frequencies w; and mode shapes ¢;. Modal damp-
ing of the structure ¢; is assumed to be ¢; = 0.005 for
t=1,---,21. The antenna structure is free to rotate about
the elevation and azimuth axes.

1. Matrix Ag. Denote
= diag(w;), Z =diag($),i=1,2,---,m (3)
then the system matrix A, for the antenna structure is

0 I,

As = (4)
-0 —27ZQ

'R. Levy and D. Strain, JPL-IDEAS Finite Element Analysis and
Design Optimization Program, Document NPO-17783 (internal
document), Jet Propulsion Laboratory, Pasadena, California, Oc-
tober 1988.

206

where I,,, is the identity matrix of dimensions m x m. De-
tails of the derivation of A, are presented in [1]. Numer-
ical values of 2, Z, and other parameters are given in
Appendix A.

2. Matrix Cg The following outputs of the an-
tenna structure are considered: elevation angle 0., ele-
vation rate 9,3, elevation pinion rate HPG, azimuth angl
#,, azimuth rate 04, azimuth pinion rates 9pa1 and 0pa2,
pointing error angle in elevation ¢, pointing error angle
in cross-elevation ¢;,;, and subreflector z,y, and z posi-
tions ¢sz,¢sy, and ¢;,. Thus, the antenna output matrix
C; consists of twelve rows:

[Csl)c.?;r" Csllvcsle] (5)

where
Cs1 is the elevation encoder reading
Cs-, Is the elevation rate
Cs3 1s the elevation pinion rate
Cs4 is the azimuth encoder reading
C,y5 is the azimuth rate
C,y6 and Cy7 are azimuth pinion rates

Csg and C,9 are the pointing errors in elevation and
cross-elevation

Cs10, Cs11, and Cjyp2 are the subreflector z,y, and z
positions

The first two rows (the elevation angle and rate) are de-
termined as follows. In the finite-element model, the node
at the bull gear center has a label nb = 5380 and the node
at distance R to nb has a label nc = 41212 (see Fig. 1).
The high stiffness of the bull gear and the close location of
the two nodes allows one to determine the elevation angle
as a rigid-body rotation

Yne — Ynb - (Cncyq’ - Cnbyq))q.q - (¢ncy - ¢nby)Qs
R R R

where R is the bull gear radius and Chey and Cpyy denote
row vectors with one nonzero element. The nonzero ele-
ment of Cr.y is equal to 1 and is located in the position
in g, corresponding to the y displacement of node ne. The



nonzero element of Cy3y is equal to 1 and is located in the
position corresponding to the y displacement at node nb
in the vector g;. Thus, ¢ncy and ¢ny, are

¢ncy = [¢lncya t ¢nby = [¢1nbya Uy Cbmnby]

" ¢mncy]:

where @incy is the ith mode component at node nc in the
y direction and ¢;npy is the ith mode component at node
nb in the y direction. From this, it follows that:

Csl = {0 Cse]a C.!Q = [C.se 0] (6&)

where Cye = ($ncy — Pnby )/ R

For the determination of the pinion rate measurement
matrix Ci3, denote the velocity at pinion housing v, (at
node nu), bull gear velocity v, at node no (see Fig. 1), and
their projections v; and v, onto a plane tangential to the
bull gear at node no. For the pinion rate 0, = (v1—v2)/Tpe
and for v; = Cy1vs and vy = Cyov, from the JPL-IDEAS
code, one obtains

CBOCUS

Tpe

V1 — Uy =

where v, is a modal velocity defined in Eq. (2) and Cjoe =
Cu1 — Cy2. Therefore, Oy = Cypevs = [0 Ciype|z,, where
Cspe = Cioe/Tpe, finally giving

Cy3 = [0 Cspe) (6b)

The matrix C,,. is directly obtained from the JPL-IDEAS
code.

The azimuth position angle is obtained as 6, = C,g¢s,
where C, is a result of the JPL-IDEAS code and, thus,
8y = [Cq Olzy,84 = [0 Cylz,. Therefore,

Csq = [C, 0], Css = [0 C4] (6¢)

The last seven rows of C; are obtained from the finite-
element model. For azimuth pinion rates épal =
[0 Cpar)zs, 9pa2 = [0 Cpa2]zs, pointing errors €¢; = [Cere 0],
€zel = [Cerz 0], and subreflector positions ¢;, = [Cssz 0],
gsy = [Csy 0], and g,. = [C,. 0], thus,

CsG - [0 Cpal]y Cs7 = [0 Cpa?] (Sd)

C.?S = [Cere 0] ng = [Cerr 0} (66)
C.le = [C.s:r 0]1 C‘511 = [CSU 0]’ C"lz = [Csz O]
(61)

3. Matrix Bg. The inputs to the structure are:
an elevation-axis drive torque, two azimuth-axis drive
torques, and a wind disturbance force. The elevation-axis
drive torque is applied to the elevation bull gear by the
pinion, as shown in Fig. 1. A node labeled no = 86302 in
the finite-element model is the point of contact between
the pinion and the bull gear, while a node with the label
nu = 86881 is located at the joint between the supporting
truss structure and the pinion housing. The rigid pinion
housing includes two drive systems. Consider forces at
nodes no and nu and their components tangential to the
bull gear at node no (Fi,,) and at node nu (F,,). As-
suming a rigid pinion, the torque applied to the pinion of
the gearbox is

_Flno_Ftnu

Tpe

T

where rp. is the elevation pinion radius. From the JPL-
IDEAS code, one obtains the relative tangential displace-
ment Agq;. of nodes no and nu, in modal coordinates,

Aqte = Gtno — Qtnu =

aoeq.s

where the matrix Cs,. has been already described. Thus,
the matrix B, for the force AF;e = Fino — Finu 18

-1~T
Mm Csoe

Tpe

Bgoe =

and the matrix B,, for the elevation torque is

B,. = (7a)
BSOC

The matrices B,s1 and B,,o for the azimuth-axis drive
torques are obtained as follows. The tangential displace-
ments of the azimuth pinion contact points are given by

q1 = Csalq.sa qi2 = Csa?Qs
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where g;1 and ¢;2 are the tangential displacements, Cisq1
and C,, are determined from the JPL-IDEAS finite-
element model, and ¢, is the modal displacement vector
of the structure. Thus, the azimuth-axis drive input ma-
trices are

0 0
Bga1 = » Byaz = (7b)
M5 Con MzCT,

sa2

Wind disturbances are applied as wind forces from the
z and y directions (z is the elevation axis direction and y
is a horizontal direction orthogonal to the elevation axis).
The input matrices By, and Byy for the wind forces are

obtained from the JPL-IDEAS model; hence, the wind
input matrix is

Byind = (7c)

4. Matrix Dg. Matrix D, is a zero matrix of dimen-
sions ¢ X p, where ¢ is the number of outputs and p is the
number of inputs to the structure.

B. Model Reduction

The structural model under consideration consists of
21 modes or 42 states. However, some of these modes
are insignificant and can be eliminated. Observability and
controllability properties are used to determine modes for
elimination. A balanced representation [2] is a state-space
representation with its states equally controllable and ob-
servable, and the Hankel singular value is the measure
of the joint controllability and observability of each bal-
anced state variable. The states with small Hankel sin-
gular values can be deleted, since they are weakly excited
and weakly observed at the same time, causing a small
modeling error. For flexible structures with small damp-
ing and distinct poles, the modal representation is almost
balanced, cf. [3,4,5]. Each mode has almost the same con-
trollability and observability property; hence, each mode
can be considered for reduction separately. For a structure
with m modes, matrix B; has 2m rows and matrix C, has
2m columns. Denote b, as the last m rows of B,, ¢, as the
first m columns of C,, and ¢, as the last m columns of C,
then b; is the ith row of b,, ¢, is the ith column of ¢,
and c,; is the ith column of ¢,.. The Hankel singular value
for the ith mode is given by Eq. (53) of [4] and Eq. (14)
of [5]
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\/(wbibsibz)(wqich,-qu + wrwiclie,;)

Y= 4Ciw2 (8)

Care should be taken when determining Hankel singular
values. Units should be consistent, otherwise some inputs
or outputs receive more weight in Hankel singular value
determination than necessary. Consider, for example, the
azimuth encoder reading in arcseconds and the elevation
encoder reading in degrees. For the same angle, the numer-
ical reading of the azimuth encoder is 3600 larger than the
elevation encoder reading; hence, the elements for the az-
imuth output are much larger than those for elevation. On
the other hand, some variables need more attention than
others: the pointing error and encoder readings are the
most important factors in the antenna performance; hence,
their importance has to be emphasized in mode evaluation.
For these two reasons, consistency of units and variable
importance, the weighting factors ws; > 0,wy; > 0, and
wp; > 0fore =1,---m are introduced. Typically, weights
are set to 1. However, for more important variables, the
weight 1s set larger than 1.

For each mode, the Hankel singular value is determined
and used to decide the number of modes in the reduced
structural model. For the rigid-body modes, Hankel sin-
gular values tend to infinity; hence, rigid-body modes are
always included in the reduced model. Hankel singular
values, with all weights set to one, of the 19 flexible modes
of the antenna model are plotted in Fig. 2.

The reduced order model consists of 10 modes: two
rigid-body modes and eight elastic modes, with natural
frequencies 3.1240, 3.4880, 4.1140, 4.4450, 6.5820, 7.1540,
7.4880, and 9.112 Hz (shadowed in Fig. 2). The transfer
functions of the full and reduced models of the antenna are
shown in Fig. 3, indicating that the reduced model repre-
sents properties of the original system. At this stage, wind
disturbances are not included in the model and, therefore,
are not considered in model reduction. One should note,
however, that for a model with disturbances included, a
different reduced model will be obtained, as shown in Sec-
tion VI of this article.

lll. Drive System Model

Three antenna drives, the elevation drive (ELD) and
two azimuth drives (AZD1 and AZD?2), are analyzed. Each
of the drives has three inputs: rate command (doe or
90a), torque bias (Vpse O Upsal, Vbsaz), and pinion rate (épe
or 9pa1,épa2), and the following outputs: torques (7. or



Ts1,Ta2) and bias voltages (v, v.2) to balance the load
between two azimuth drives. The amplification parameter
ko 1s given in Appendix A.

A. Full Model

The structure of each drive is the same, as shown in
Fig. 4. The structure consists of two identical subsystems
denoted G, (which model the motor, amplifier, gearbox,
tachometer, and rate-loop compensation electronics), the
command amplifier G., and the torque share bias loop.
The subsystem G, is shown in Fig. 5. Denoting the first
state variable z; = vy, the G, subsystem’s state equation
is

£ = —17 'z 4 kik, G, (9)

The equations for subsystem G, are derived in [1]. The
inputs are a biased rate command (v;) and pinion rate
(6p). An additional brake parameter x, will be discussed
later. The outputs are motor current (7,), motor angu-
lar velocity (wy,), and torque (T'). These outputs are the
fifth, sixth, and seventh states, respectively, in the follow-
ing state-space equations for subsystem G,

T
&, = AoZo + Brivi + B120, = Cozo  (10)
to
where
010 0 0 0 0 7
0o -+ 0 0 0 —~kwen O
0o 0 0 1 0 0 0
Ag= & b o L k. 0 0
kpki  kpkiTs "
U e 7 it Al <
0 0 0 0 0 -5
Lo 00 0 0 kpeN, 0 |

BL,=[0100000], BL,=[000000 — kyp N, N]

Ci;=[0000001], C1o=[0000100]

Cll
Co = )
Cl?

B, = [B11 Bi2]

Two systems’ G,’s are located in the drive system, see
Fig. 4: the first one with inputs vy, 6,, outputs 71, 4,1, and
state vector z91; and the second one with inputs vlg,ép,
outputs T5, 7,2, and state vector rq,. The equations for
these systems are

TR

Ta1 = A,Zo + Biiviy + Biaf, = Cozay (11)
_i01—
- -T2 1

Zoa = AoZ2o + Biivia + Biof, = Cozan (12)
—iOQ—

The amplifier for the bias signal has an input of Av,
and an output of v,. Denoting 23 = v,, this amplifier’s
state-space equation is obtained

i’S:“Ts—lm3+kcters—lAUc (13)

The nodal equations complete the set of the drive-
system model equations

T=T1+T>, Ti =Cnza, To=Chnzo (14a)
Avc = Vel — Vea + kbsvbias
= ket Cra(za1 — 222) + kisUbias (14b)

U] = V1 —Uy = T1—23, viz = v1+v, = 21+23 (14c)

(14d)

Ve = Vo1 + ve2 = ketCra(z12 + 222)

Denoting the state vector zI, = [2T 2T 27, 2T] and com-
bining Egs. (9) through (14), one can write the equations
for the drive system as follows:

i‘m = Amrm ~+ Bmunu Ym = Cm:l:m (15)

where ul = [90 ép Vbias], Yh = [T ve Wm1 wma), and
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r—1/m 0 0 0 1
B, 4 0 —-Bn
An =
Bll 0 Ao Bll
L 0 1 —p1 —1/76
'Iclk's/‘rl 0 0 T
0 By 0
Bm = [Bmo Bmp mea] =
0 B, 0
L 0 0 p2 4
[ Crnt ] [0 Cn Cin 07
Cmc 0 kctCIZ kctCIQ 0
Cn= =
CYoml 0 CIS 0 0
L Uom2 4 L0 0 C13 0
_ kctfrkctCIZ _ kctfrkct
pl - TG ) - TG

Ci3=[0000010]

B. Model Reduction

The drive system model is reduced by applying the bal-
ancing principle. The system has a pole at zero; hence,
the grammians and Hankel singular values do not exist,
but tend toward infinity. It is shown in Appendix B that
the balanced representation exists for the case of poles at
zero. The reduction using antigrammians can be com-
pleted. Note that the reduction of a triple (A4, B, C) leads
now to the quadruple (A4,, B,, C,, D,). This fact has to be
taken into account when deriving the rate-loop model.

The drive system has 16 state variables. The plots
of the singular values of the balaneed antigrammians for
the elevation and azimuth drive systems are shown in
Fig. 6. The singular values of component number 5 and
greater are large in comparison to the remaining compo-
nents. Therefore, the reduced system consists of five state
variables (one state with the pole at zero). The transfer
functions of the reduced and full elevation drive systems
are compared in Fig. 7 (transfer function for the azimuth
drives are similar). From Fig. 7, one can see that the re-
duced model almost exactly approximates the full model.
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IV. Rate-Loop Model

In this section a rate-loop model with active azimuth
and elevation drives is presented. Also, a model with an
active elevation drive and with activated azimuth brakes is
derived, along with a model with an active azimuth drive
and with elevation brakes activated. The obtained rate-
loop models are reduced to obtain the smallest acceptable
model.

A. Full Model

The rate-loop model of the antenna is shown in Fig. 8.
The model consists of the antenna structure model and
models of three drives: the elevation drive (ELD) and two
azimuth drives (AZD1 and AZD2) described above.

Combining the equations for structure and the ELD,
AZD1, and AZD2 with the nodal equations for the rate-
loop model as in Fig. 10, one obtains the following equa-
tions (where the term D appeared as a result of model
reduction). For the elevation drive,

éoe
i'e = AmeTe + [Bmoe Bmpe mese] épe (163)
Vpse
éoe
Te = Cmtxe + [Deo Dep Debs] épe (16b)
Ubse
For azimuth drive AZD1,
éal
:.Cal = Amaxal + [Bmoa Bmpal mesa] épal (173)
Ubsal
Tal Cm(
= La1
Vel Crne
éal
Dot Dapt Dapst .
+ Opa1 | (17D)
Daou Dapv Dabsv
VUpsal



For azimuth drive AZD2, 2y = Ass + BseTe + Bsa1Ta1

9.(12 -+ BsaQTaZ + Bwindfwind (19b)
Zao = AmaTaz + [Bmoa Bn‘ma? mesa] H.Pa? (183')

The nodal equations are
Vpsa2

Tyo Cot B.al = o.oa — Vga = oloa - ka(vcl - v.:z)
= Tg2
Ve2 Cm.c

= aoa - kaCmc(ral - $a2) (203')

Dgot Dapt Dapsy . éa2 = éoa. + Voo = éoa + ka(vcl - Uc2)
+

Opaz | (18D)
Daoy  Dapy  Dapsy .
’ b Vbsa2 = 60"' + kaCmC(xal - xa?) (20b)

For the antenna structure,

For the state vector z7; = [2T 2T, 27, 27T], the input u,; =

) T
[eoe goa Vbse Ubsal Vbsa?2 fwind]Tv the OUtPUt Yrl = [ge 00] s

y, = C,z, (19a) and the state triple (A4,, B, Cyy) is found
r Ame 0 0 BmpeC.s3 1
0 Ama - k'aBmoaCmca k'a Bmoacmca Bmpa CsG
A = 0 kaBmoaCmea Ama — kaBmoaCmea Bmpacs7 (213«)
Bsecmte B.«alcmta + ka Bsa2Cmta + ka As + BaeDepCsB
X(BsaZ - Bsal)Daoicmca X(Bsal - Bsa?)Daot meca + BsalDaptC.sG
L + BsaQDaptCs7-
i Bmoe 0 mese 0 0 0 ]
0 Bmoa 0 mesa 0 0
B, = (21b)
0 Bmoa 0 0 mesa 0
-BseDeo (B.ml + BsaQ)Daot BseDeba BaalDab.’t BsaQDabat Bwind-
B. Rate-Loop Model With Active Elevation or Azimuth
00 0 Ca Brakes
Crl = (21C)
0 0 0 Cyq

Most frequently, the antenna dynamics are simulated
with elevation and azimuth drives active simultaneously.

211



There are situations, however, when either the azimuth or
elevation brakes are on and only one antenna drive is ac-
tive. There are two ways of modeling the brake action in
this case. In the first way, the numerical value to the pa-
rameter «, shown in Fig. 5, is set. For an active brake, the
tachometer shaft is still, hence w,, = 0. This is obtained
by setting k = 0 in Fig. 5. For the case where the brake
is off, one sets k = 1. Despite its simplicity, this approach
leads to an unnecessarily large model. The dynamics of
the drive with the active brakes are included in the model,
although the drive is not active. This disadvantage is re-
moved by deriving separate models for the antenna with
active brakes.

Block diagrams of the antenna control systems with ac-
tive brakes are shown in Fig. 9. For the active elevation
brakes, the elevation torque 7, is due to elastic deforma-
tion of the pinion shaft, hence,

T. = kgoeepe = kgoe[Cape O]Is
Thus, the equation for the antenna structure is

0
z, = A+ [Cspe 0]335 +Bsa1Tu1+ BsaaTan (223)

Bsoe

and the following matrix for active elevation brakes is ob-
tained:

0 0
(22b)

For the case of active elevation brakes, the state variable
z, representing the elevation drive is zero. These states are
no longer necessary, and may be removed from the state
vector z,;. As a result: the first row and column of matrix
A, are deleted and the matrix A, is replaced with A,,;
the first row and the first and third columns of matrix By;
are deleted (no 7T, and v, inputs); and the first column of
matrix Cp is removed. The block diagram of the rate-loop
system with active elevation brakes is shown in Fig. 9(a).

As in the case for elevation, the torques at the az-
imuth drive, due to active azimuth brakes, are determined

through the azimuth drive’s stiffness and pinion angle of
rotation

Ta1 = kgoaepal = kgoa[cspal 0]133

212

Ta2 = kgoagptﬂ = kgoa[csp(ﬂ O]ms
The resulting structure equation is

0 0
[Capal 0]1‘5 +
By B

z, = Ayz, + [Capa2 O]l's

+ B, T. (23a)

Thus, the structure matrix with azimuth brakes active is

0 0
(23b)
Blcspal + B2Capa2 0

For the case where the azimuth brakes are active, the
state variables z,1 and 242, representing the states of the
azimuth drives, are zero. These states may be removed
from the state vector z,;. The rate-loop matrix A,; in
Eq. (21a) in this case has the second and the third rows and
columns deleted and the matrix A; is replaced with A,,;
the matrix B,; has its second and third rows, and second,
fourth, and fifth columns deleted (no T,1, 7,2, and vy,
inputs); and matrix Cy; has its second and third column
deleted. The block diagram of the rate-loop system with
active elevation brakes is shown in Fig. 9(b).

C. Model Reduction

Some of the poles of the rate-loop model are at zero;
hence, the reduction procedure from Appendix B is ap-
plied. Note that the state triple (A,;, By;,Cy) is returned
as a quadruple (A, By, Cy1, Dpy) after reduction

(Art, Bt Crt) = (Ari, By, Crt, Dyy) (24)

Singular values of the balanced antigrammians of the
rate-loop model are shown in Fig. 10. The rate-loop model
designed from the reduced structural, elevation drive, and
azimuth drive models consists of 35 states. It is reduced
to 27 states—singular values of states 28 through 35 are
large enough to have these states reduced. The {frequency
response of the reduced model is compared with the re-
sponses of the full model in Figs. 11 and 12 (the full model
consists of a full antenna structural mode, and full azimuth
and elevation drive models—all together 90 states).



V. Position Loop Model

The rate-loop system, with the position loop closed, is
shown in Fig. 13. A proportional-plus-integral (PI) con-
troller is applied. Consider first the series connection of
the rate-loop system and the controller, as in Fig. 13(a).
Define new state variables z.; and z;

i'ei = 630 and -iaz' = a0 (25)

and the state vector z, for the series connection z7 =

o
[J:;F, Tei Zqi]. The system output is

de Cezri +deere + dearg

aa Cazrl + daere + daaTa

where d..,dcq,dse, and dg, are entries of D,; obtained in
Eq. (24). The input is ul = [f., 040] and the inputs to
the rate-loop systems are

Te = k‘ppeoeo + kiieZe; and vy = kppagao + kiiaZai (26)

where kppe, kiie, kppa, and k;;q are proportional and inte-
gral parameters of the controllers. The equations for the
rate-loop systems are

r1 = Artze + Bere + Barg (27)

Combining Egs. (25), (26), and (27), one obtains

z, = A,x, + B,u, and y, = C,z, + D,u, (28)
where
An kiieBe kiiaB

A, = | 0 0 0

0 0 0

kppeBe kppa B
B, = 1 0
0 1

Ce kiiedee kiiadea
C, =
Ca kiiedae kiiadaa
kppedee kppadea
D, =

kppedae kppadaa

and B. and B, are the first and the second columns of

B,
For the closed-loop system
Uo = Ycom — Yo (29)

where yz;m = [ecom Bacom] 1s @ command signal. Intro-

ducing Eq. (29) to Eq. (28), one obtains

rg = Agzy+ Bcf?jcom + Bclwfw

(30)
Yo = Cazer + DatYeom
The closed-loop system matrices are
A=A, — BoCy, Bua=B,,
(31)
Ca=C,—-D,C,, D,=0D,

and the wind input matrix B, is obtained from the sixth
(Br16) and the seventh (B,17) columns of B,y

By Briz
Beiw = 0 0
0 0

The closed-loop system performance is illustrated in
Figs. 14 and 15 in the frequency domain, and in Figs. 16
and 17 in the time domain.

Vi. Wind Disturbance Simulations

In order to evaluate the antenna pointing error due to
wind disturbances, two separate problems need to be inves-
tigated. First, wind forces acting on the antenna structure
should be determined. Wind properties have been stud-
ied in [6,7], although wind forces acting on the antenna
structure are not yet satisfactorily known. Secondly, the
antenna model for simulation of the pointing error due to
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wind disturbances should be developed. In this section,
the latter problem is considered, presenting the wind dis-
turbance simulation tools and simulation results for the
assumed wind force properties.

The wind input to the antenna model is applied through
the input matrix Byina given in Section II. The entries of
this matrix are large in comparison to the entries of the
remaining input matrices Bje, Byq1, and B,qz for the el-
evation and azimuth pinion torques. The large values of
Buwinad appeared since the wind acts directly on the tip-
ping structures, while torques act indirectly through the
gearboxes, being reduced by the gearbox ratios. The large
value of Byind is a dominant factor in the reduction of the
structural model; hence, it is compensated for by setting
the appropriate weighting for the wind input——in this case
the wind input weight is 10~8. The input matrix Buyind
is determined for a wind speed of 100 mph, and for this
speed a unit wind force of F,,, = 11b is applied. The force
F,, (Ib) for the speed v, (mph) is

Vw

F, = aﬁ,Fow and ay, = 100

(32)

The reduction procedure for the model with wind distur-
bances is similar to that presented above, however, the
results are different. The plot of the Hankel singular val-
ues for the structure with the wind input is presented in
Fig. 18. Comparing this plot with the one in Fig. 2 shows
that a different set of modes plays the most important role
in the system reduction. The wind input to the rate-loop
model and the position loop model is given in Sections IV
and V, respectively. The magnitude of the transfer func-
tion from the wind in the z and y directions to the eleva-
tion and cross-elevation pointing errors is shown in Fig. 19.
The figures show that the flexible part of the antenna has
a significant part in the pointing error balance.

Two kinds of antenna pointing error due to wind distur-
bances have been simulated: static error due to constant
wind pressure, and dynamic error due to wind turbulence.
The following results for the static wind load are obtained.
For a 30-mph z-direction wind, the elevation pointing er-
ror is 2.1 mdeg and the cross-elevation pointing error is
8.9 mdeg. For a 30-mph y-direction wind, the elevation

pointing error is 0.5 mdeg and the cross-elevation pointing
error is 0.08 mdeg. The small pointing error due to the
wind in the y direction is a result of the integrating action
of the controller.

The dynamic wind force is generated as a random
white-noise process pre-filtered by a filter with the spectral
properties presented in Fig. 20. The obtained spectrum is
an arbitrarily selected wind spectrum, a rough approxima-
tion of the Davenport model of the wind for a filter with
fmaz = 0.1 Hz, where fp,q, is the frequency of maximal
value of the spectrum. Simulations have been performed
for the position loop model consisting of 39 states. The
forcing function is shown in Fig. 21, with a root mean
square (rms) value equal to 0.018 Ib (20 percent of the
static pressure). The antenna pointing errors, in both ele-
vation and cross-elevation, are presented in Fig. 22. Tor an
z-direction wind, the rms error in elevation is 0.61 mdeg,
and in cross-elevation it is 2.45 mdeg. For a y-direction
wind, the rms error in elevation is 2.87 mdeg, while in
cross-elevation, it is 0.21 mdeg. Note that the static point-
ing error is dominant for the z-direction wind, and the dy-
namic pointing error is dominant for the y-direction wind.
The y-direction static action of the wind is sensed by the
elevation encoder and is compensated for by the Pl con-
troller, while the static z-direction wind and the dynamic
wind are barely registered by the encoder and are thus not
compensated for by the controller. Again, the dynamic
pointing error, due to some arbitrariness in selecting the
filter, is an approximate result. More studies on wind force
properties need to be done.

VIil. Conclusions

In this article the modeling procedures and reduction
techniques for the DSS 13 antenna structure and its control
system have been presented. Through balancing the sys-
tem controllability and observability properties, a reduced
system model has been obtained. Antenna dynamics, rate-
loop dynamics, and dynamics of a system with a closed
position loop have been simulated. The model allows one
to simulate elevation dynamics, cross-coupled dynamics in
azimuth and elevation, and the dynamic radio-frequency
pointing error due to command inputs and wind distur-
bances.
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Appendix A
Parameters of the DSS 13 Antenna

The structural parameters for the DSS 13 antenna are:
a = 25 deg
¢; =0.005forz=1,---,21

node numbers are nc = 5380, no = 86,302, nu = 86,881, and nb = 41,212

Q=diag ( 0, 0, 12.4344, 13.1067, 19.6287, 19.9805, 21.9158,
25.8490, 27.9288, 28.6011, 34.9094, 35.5126, 36.8760, 41.3559,
42.3047, 44.9499, 47.0485, 48.1292, 49.4675, 52.9547, 57.2524)

M, = diag ( 214.3607, 296.0889, 692.2613, 11.3445, 244.8719, 62.6765, 65.7475,
799.5434, 179187, 18.6408, 18.9721, 24.6747, 53.4131, 7.8255,
9.7606, 37.4093, 38.2110, 27.3915, 25.5052, 7.5668, 200.0856)

modal matrix ® = [¢;, ¢2, - - -, ¢21], where ¢; = ith mode shape and ¢; = [¢;1, dio, - -- ,qﬁip]T, where ¢;; = jth component
of the ith mode.

The rate-loop system parameters for the DSS 13 antenna are:

k1 = 716.197 V sec/rad kyo = 1.5 x 107 Ib/rad for elevation
knm = 15.72 Ib/A for elevation kgo = 2.0 x 107 1b/rad for azimuth
kp = 15.36 Ib/A for azimuth keypr = 0.33

ky = 1.79 V sec/rad k. =0.11111

k= 0.8 V/V kys = 0.66

kigen, = 0.0384123 V sec/rad for elevation 71 = 0.0063662 sec

kiacr = 0.037337 V sec/rad for azimuth 79 = 0.094 sec

k, = 80 V/sec V for a range of 49-83 73 = 0.002 sec

k; = 87.13 V/sec V 74 = 0.00484 sec

kije = kiia = 0.1 5 = 0.0021 sec

kppe = kiza = 0.5 76 = 0.7304 sec

keur = 0.12658 V/A N = 354 for elevation

k; =54 V/V N = 595 for azimuth
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1.236 Ib/sec? for elevation
1.0848 Ib/sec? for azimuth

0.456 2 for elevation

Ry = 0.668 Q for azimuth
L, =0.011 H for elevation

L, =0.0144 H for azimuth



Appendix B

Model Reduction for Systems With Integrators

Model order reduction methods for stable linear sys-
tems are based on joint controllability and observability
tests, through balancing of system grammians [2]. For lin-
ear unstable systems, various techniques based on prop-
erties of the controllability and observability grammians
have been developed [8,9,10]. Consider a system with in-
tegrators whose output is an integral of an input. It has
a pole (or poles) at zero, consequently, its controllabil-
ity and observability grammians do not exist, and model
reduction based on its grammian properties cannot be exe-
cuted. Systems with integrators, however, are controllable
and observable, hence, these properties can still be used
for model reduction. In this appendix the reduction algo-
rithm for systems with integrators is derived, and systems
with integrators are defined as follows.

Definition B.1. A linear system with the state-
space representation (A, B,C, D), A € R**", B € R"*P,
C e R*" and D € RI*P | is a system with integrators if
its n — m poles are stable, the remaining m poles are at
zero, and it is observable and controllable, see [11]. It is
assumed also that A is nondefective [12] (geometric mul-
tiplicity of poles at zero is m).

Systems with integrators are linear systems commonly
encountered in control design and analysis. This appendix
presents a reduction method, by introducing antigrammi-
ans.

Definition B.2. For a controllable and observable
triple (A, B,C), the matrices V, and V, satisfying the fol-
lowing Riccati equations:

V.A+ ATV, +V.BBTV, =0
(B-1a)
VoAT + AV, +V,CTCV, =0

are the controllability and observability antigrammians.

For stable controllable and observable systems
V, = W-! and V, = W;!, where W, and W, are con-
trollability and observability grammians and satisfy the
Lyapunov equations

AW, + W.AT + BBT =)
(B-1b)
W,A+ ATW,+CTC =0

Note that the grammians for a system with integrators
do not exist, but antigrammians do; for an unobservable
or uncontrollable system antigrammians do not exist, but
grammians do. The existence of antigrammians is ex-
ploited for the balancing and model reduction of systems
with integrators.

For a stable, controllable, observable, and balanced sys-
tem the grammians as well as the antigrammians are equal
and diagonal

nI=r" (B2

where I' = diag(y;) and II = diag(w;) for ¢ = 1,2,... n,
and satisfy the following equations:

IMA, + A{H + HB(,BZH =0
(B-3a)
MAT + AT+ TICT G, = 0

AL +TAT + ByBT =0
(B-3b)
TAy+ AT+ C{C, =0

The representation (A, By, Cy, D) is balanced.

Proposition B.1. For a balanced system with integra-
tors one obtains II = diag(0,, II,), where 0,, is an m x m
zero matrix, and Ay is block-diagonal, Ay = diag(0,, As,).

Proof. Consider A, B, and C in the form
A = diag(0,, A.), BT =[BT BT], Cc=1[C, C,] (B-4)

Matrix A in the form of Eq. (B-4) always exists due to
m poles at zero, and B and C exist due to nondefectiveness

of A. From Eq. (B-1a) it follows that:

Verr Br =0, CoVorr =0, Vo =0, Voro =0 (B'5)

where V, and V,, are divided conformably to A:

1/(:7‘1‘ Vcro Vorr Voro
VC = 3 VO =

T s T
vcro "COO Voro VOOO
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For a controllable and observable system (by Definition
B.1) the matrices B, and (| are of full rank, thus it fol-
lows from Eq. (B-5) that V.., = 0,V = 0, and that
Ve = diag(0m Veoo), Vo = diag(0m Vieo), which in bal-
anced coordinates gives Il = diag(Om IL,). a

Proposition B.2. A balanced representation of a sys-
tem with integrators (As, By,Cy, D) is obtained by the
transformation T}

Ay =T YAT,, By=T;'B, Cy=CT, (B-6)
where
Ty = TiT» (B-7)

The transformation 7; turns A into block-diagonal form
Ay = diag(0,, A,), e.g., into real modal form

Ay =T ATy (B-8)

and the transformation T is represented by the form T =
diag (I, Tso), where I, is an identity matrix of order m,
and T3, balances A,

Abo = Tb;leTbO (B'g)

Proof. Immediate, by introducing Eq. (B-5) into
Eq. (B-3a). 0
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The antigrammian Il of a balanced system with inte-
grators is ordered increasingly

I = diag(m, 72, ..., Tno1, Tn) (B-10)
where m; > 0 and 74y > m for i = 1,..., n, with the first
m singular values at zero, 7y = 0 for ¢ = 1,...,m. The

system is reduced by truncating the last n —k states of the
balanced representation and leaving its first & states. Let
the matrices Ay, By, and C} be partitioned conformably

| A A B _
Ab - [AQ] AQZ] ) Bb - [BQ] 3 Cb — [CICZ]

(B-11)

then the reduced system representation (A, 5,,C;,
D,)is A, = A1, Br = B1,C, = Ci, and D remains un-
changed. The system can also be reduced by the enhanced
low-frequency approximation, see [13,14]

Ar = A11 - A12A2_21A217

B, = By — A12A3,) B,
(B-12)
Cr = C1 — C2A3,) Aay,

D, =D — CyA3; By



